

Negative voltage regulators

Datasheet - production data

Features

- Output current up to 1.5 A
- Output voltages of 5; 8; 12; 15 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- Output tolerance 2% (AC version) or 4% (C version) at 25°C

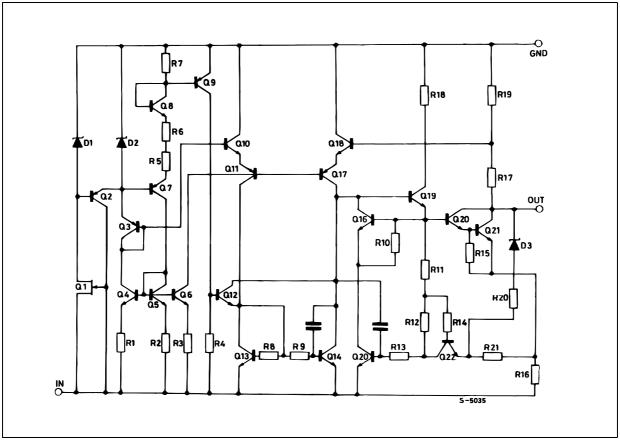
Description

The L79 series of three-terminal negative regulators is available in TO-220, TO-220FP and D2PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L78 positive standard series, they are particularly suited for split power supplies. If adequate heat sinking is provided, they can deliver over 1.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Table 1. Device summary

	Order codes						
TO-220 (single gauge)	TO-220 (dual gauge)	D²PAK	TO-220FP	Output voltages			
L7905ACV	L7905ACV-DG	L7905ACD2T-TR		- 5 V			
L7905CV	L7905CV-DG	L7905CD2T-TR	L7905CP	- 5 V			
L7908CV	L7908CV-DG			- 8 V			
L7912ACV	L7912ACV-DG			- 12 V			
L7912CV	L7912CV-DG	L7912CD2T-TR	L7912CP	- 12 V			
L7915ACV	L7915ACV-DG			- 15 V			
L7915CV	L7915CV-DG		L7915CP	- 15 V			

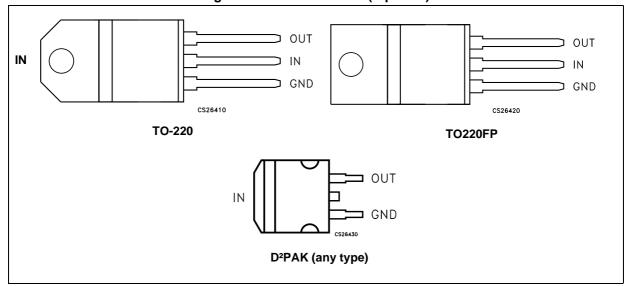
Contents L79


Contents

1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Test circuit	6
5	Electrical characteristics	7
6	Application information	14
7	Package mechanical data 1	16
8	Packaging mechanical data	25
9	Revision history	27

L79 Diagram

Diagram 1


Figure 1. Schematic diagram

Pin configuration L79

2 Pin configuration

Figure 2. Pin connections (top view)

L79 Maximum ratings

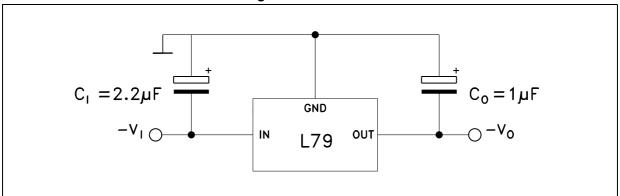
3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
VI	DC input voltage		-35	V
Io	Output current	Internally limited		
P _D	Power dissipation	Internally limited		
T _{STG}	Storage temperature range		-65 to 150	°C
т.	Operating junction temperature range	for L79xxC	0 to 150	°C
T _{OP}	Operating junction temperature range	for L79xxAC	0 to 125	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.


Table 3. Thermal data

Symbol	Parameter	D²PAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	°C/W
R_{thJA}	Thermal resistance junction-ambient	62.5	50	60	°C/W

Test circuit L79

4 Test circuit

Figure 3. Test circuit

5 Electrical characteristics

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -10 V, I $_O$ = 500 mA, C $_I$ = 2.2 μF , C $_O$ = 1 μF unless otherwise specified.

Table 4. Electrical characteristics of L7905AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-4.9	-5	-5.1	V
V _O	Output voltage	$I_O = -5 \text{ mA to -1 A}, P_O \le 15 \text{ W}$ V _I = -8 to -20 V	-4.8	-5	-5.2	V
ΔV _O ⁽¹⁾	Line regulation	V _I = -7 to -25 V, T _J = 25°C			100	- mV
Δνο, ,	Line regulation	V _I = -8 to -12 V, T _J = 25°C			50	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			100	mV
Δνος	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			50	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
41	Quiacant ourrent abongs	I _O = 5 mA to 1 A			0.5	m /
Δl _d	Quiescent current change	V _I = -8 to -25 V			1.3	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.4		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		100		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.4		V
I _{sc}	Short circuit current			2.1		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.5		А

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Electrical characteristics L79

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -10 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

Table 5. Electrical characteristics of L7905C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-4.8	-5	-5.2	V
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} ≤ 15 W V_{I} = -8 to -20 V	-4.75	-5	-5.25	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = -7 \text{ to } -25 \text{ V}, T_{J} = 25^{\circ}\text{C}$			100	mV
ΔνΟ, ,	Line regulation	$V_I = -8 \text{ to } -12 \text{ V}, T_J = 25^{\circ}\text{C}$			50	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C			100	mV
Δνο. ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			50	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d	Quiescent current change	V _I = -8 to -25 V			1.3	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.4		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		100		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.4		V
I _{sc}	Short circuit current			2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -14 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

Table 6. Electrical characteristics of L7908C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-7.7	-8	-8.3	V
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} ≤ 15 W V_{I} = -11.5 to -23 V	-7.6	-8	-8.4	V
ΔV _O ⁽¹⁾	Line regulation	$V_I = -10.5 \text{ to } -25 \text{ V}, T_J = 25^{\circ}\text{C}$			160	mV
ΔνΟ, ,	Line regulation	$V_I = -11 \text{ to } -17 \text{ V}, T_J = 25^{\circ}\text{C}$			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			160	mV
Δνο. γ	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			80	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d	Quiescent current change	V _I = -11.5 to -25 V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.6		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		175		μV
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V, f} = 120 \text{ Hz}$	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.5		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Electrical characteristics L79

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -19 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

Table 7. Electrical characteristics of L7912AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-11.75	-12	-12.25	V
V _O	Output voltage	I_O = -5 mA to -1 A, $P_O \le$ 15 W V _I = -15.5 to -27 V	-11.5	-12	-12.5	V
ΔV _O ⁽¹⁾	Line regulation	V _I = -14.5 to -30 V, T _J = 25°C			240	mV
Δνος	Line regulation	V _I = -16 to -22 V, T _J = 25°C			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			240	mV
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			120	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl _d	Quiescent current change	V _I = -15 to -30 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		200		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.5		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.5		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -19 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

Table 8. Electrical characteristics of L7912C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-11.5	-12	-12.5	V
V _O	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, P}_O \le 15 \text{ W}$ V _I = -15.5 to -27 V	-11.4	-12	-12.6	V
ΔV _O ⁽¹⁾	Line regulation	$V_I = -14.5 \text{ to } -30 \text{ V}, T_J = 25^{\circ}\text{C}$			240	mV
Δνος	Line regulation	$V_I = -16 \text{ to } -22 \text{ V}, T_J = 25^{\circ}\text{C}$			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C			240	mV
Δνο,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			120	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d	Quiescent current change	V _I = -15 to -30 V			1	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		200		μV
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V, f} = 120 \text{Hz}$	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.5		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Electrical characteristics L79

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -23 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

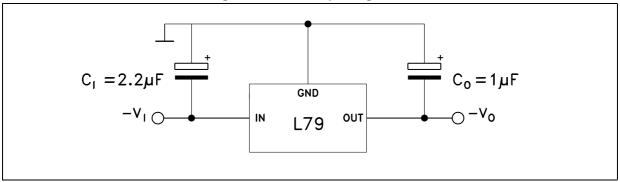
Table 9. Electrical characteristics of L7915AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	-14.7	-15	-15.3	V
V _O	Output voltage	I_O = -5 mA to -1 A, $P_O \le$ 15 W V _I = -18.5 to -30 V	-14.4	-15	-15.6	V
ΔV _O ⁽¹⁾	Line regulation	$V_I = -17.5 \text{ to } -30 \text{ V}, T_J = 25^{\circ}\text{C}$			300	mV
Δνος	Line regulation	$V_I = -20 \text{ to } -26 \text{ V}, T_J = 25^{\circ}\text{C}$			150	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C			300	mV
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			150	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
41	Quiacant ourrent abongs	I _O = 5 mA to 1 A			0.5	A
Δl _d	Quiescent current change	V _I = -18.5 to -30 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		250		μV
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V, f} = 120 \text{ Hz}$	54	60		dB
V _d	Dropout voltage	$I_O = 1 \text{ A}, T_J = 25^{\circ}\text{C}, \Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.3		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.5		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -23 V, I $_O$ = 500 mA, C $_I$ = 2.2 $\mu F,$ C $_O$ = 1 μF unless otherwise specified.

Table 10. Electrical characteristics of L7915C


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-14.4	-15	-15.6	V
V _O	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, P}_O \le 15 \text{ W}$ $V_I = -18.5 \text{ to } -30 \text{ V}$	-14.3	-15	-15.7	V
ΔV _O ⁽¹⁾	Line regulation	$V_I = -17.5 \text{ to } -30 \text{ V}, T_J = 25^{\circ}\text{C}$			300	mV
ΔνΟ, ,	Line regulation	$V_I = -20 \text{ to } -26 \text{ V}, T_J = 25^{\circ}\text{C}$			150	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			300	mV
ΔνΟ, ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			150	IIIV
I _d	Quiescent current	T _J = 25°C			3	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d	Quiescent current change	V _I = -18.5 to -30 V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		250		μV
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V, f} = 120 \text{ Hz}$	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.3		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

6 Application information

Figure 4. Fixed output regulator

Note:

 C_l is required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolytic are used, at least ten times value should be selected. C_0 is required if regulator is located an appreciable distance from power supply filter. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

+20V O L7815 O +15V

-20V O L7915

-20V O L7915

-20V O L7915

Figure 5. Split power supply (± 15 V - 1 A)

(*) Against potential latch-up problems.

 $V_0 = V_{XX}(R_1 + R_2)/R_2$ $V_{XX}/R_2 > 3I_d$ $V_0 = V_{XX}(R_1 + R_2)/R_2$ V_1 $V_0 = V_{XX}(R_1 + R_2)/R_2$ V_1 $V_0 = V_{XX}(R_1 + R_2)/R_2$ V_1 V_1 V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_7 V_8 $V_$

Figure 6. Circuit for increasing output voltage

C3 Optional for improved transient response and ripple rejection.

0.2 Ω 2N3055 -10V Q1 1N 17905 BD175 5.6 Ω GND 1μF 3 -5039

Figure 7. High current negative regulator (- 5 V / 4 A with 5 A current limiting)

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

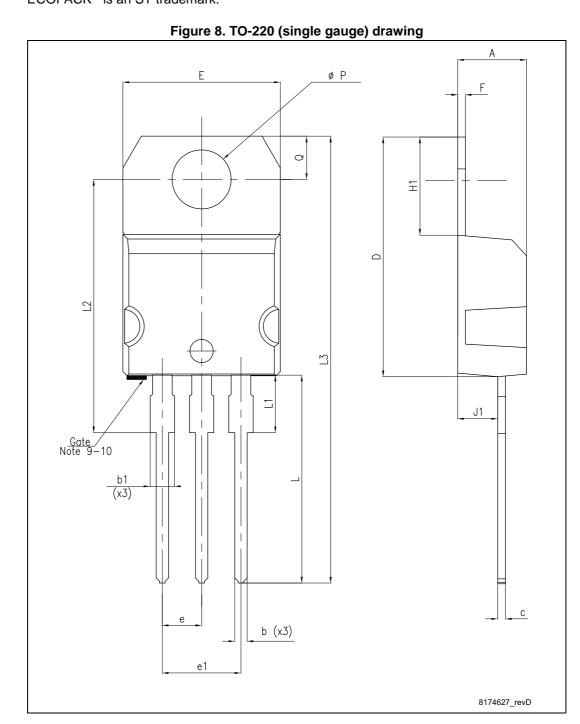


Table 11. TO-220 (single gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

øΡ Ε D L20 L30 b1(X3) -– *ь (х3)* 0015988_typeA_Rev_T

Figure 9. TO-220 (dual gauge) drawing

Table 12. TO-220 (dual gauge) mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	4.40		4.60	
b	b 0.61		0.88	
b1	1.14		1.70	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
Е	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
ØP	3.75		3.85	
Q	2.65		2.95	

Figure 10. TO-220FP drawing

Table 13. TO-220FP mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

SEATING PLANE
COPLANARITY A1

R

GAUGE PLANE
V2

0079457_T

Figure 11. D²PAK drawing

Table 14. D²PAK mechanical data

D:	mm			
Dim.	Min.	Тур.	Max.	
Α	4.40		4.60	
A1	0.03		0.23	
b	0.70		0.93	
b2	1.14		1.70	
С	0.45		0.60	
c2	1.23		1.36	
D	8.95		9.35	
D1	7.50			
Е	10		10.40	
E1	8.50			
е		2.54		
e1	4.88		5.28	
Н	15		15.85	
J1	2.49		2.69	
L	2.29		2.79	
L1	1.27		1.40	
L2	1.30		1.75	
R		0.4		
V2	0°		8°	

16.90

12.20

5.08

9.75

Footprint

Figure 12. D²PAK footprint^(a)

a. All dimensions are in millimeters.

8 Packaging mechanical data

10 pitches cumulative tolerance on tape +/- 0.2 mm

Top cover promotine ret. only including draft and radii concentric around B0

User direction of feed

AM08852v1

AM08852v1

Figure 13. Tape

REEL DIMENSIONS

40mm min.

Access hole

At slot location

Full radius

Tape slot in core for tape start 25 mm min. width

AM08851v2

Figure 14. Reel

Table 15. D2PAK tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.	— Dilli.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

L79 Revision history

9 Revision history

Table 16. Document revision history

Date	Revision	Changes	
22-Jun-2004	9	Order codes updated Table 3.	
31-Aug-2005	10	Add new order codes (TO-220 E Type) on Table 3.	
19-Jan-2007	11	D²PAK mechanical data updated and add footprint data.	
06-Jun-2007	12	Order codes updated.	
25-Oct-2007	13	Modified: Figure 3, Figure 4, Figure 6 and Figure 7.	
05-Dec-2007	14	Modified: Table 1.	
18-Feb-2008	15	Modified: Table 1 on page 1.	
15-Jul-2008	16	Modified: Table 1 on page 1.	
19-Jan-2010	17	Modified: Table 11 on page 14, added: Figure 8 on page 16, Figure 9 on page 17, Figure 10 and Figure 11 on page 18.	
26-May-2010	18	Modified: V _I parameter <i>Table 2 on page 5</i> .	
12-Nov-2010	19	Modified: R _{thJC} value for TO-220 <i>Table 3 on page 5</i> .	
18-Nov-2011	20	Added: order codes L7905CV-DG, L7912CV-DG and L7915CV-DG <i>Table 1 on page 1</i> .	
15-May-2012	21	Added: order codes L7908CV-DG Table 1 on page 1.	
04-Jun-2014	22	Part numbers L79xxC and L79xxAC changed to L79. Updated the features and the description in cover page. Updated Table 1: Device summary, Section 3: Maximum ratings, Section 4: Test circuit, Section 5: Electrical characteristics, Section 6: Application information, Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

