

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

General Description

The MAX9812/MAX9813 are single/dual-input, 20dB fixed-gain microphone amplifiers. They offer tiny packaging and a low-noise, integrated microphone bias, making them ideal for portable audio applications such as notebook computers, cell phones, and PDAs. These amplifiers feature a 500kHz bandwidth, rail-to-rail outputs, an industry-leading 100dB power-supply rejection ratio, and a very low 0.015% THD+N. Power-saving features include very low 230µA supply current and a total shutdown mode that cuts the combined supply and BIAS currents to only 100nA.

The MAX9812 is a single amplifier in a 6-pin SC70 package (2mm x 2.1mm) and the MAX9813 is a dualinput amplifier available in an 8-pin SOT23 (3mm x 3mm) package. The MAX9813 has two inputs allowing two microphones to be multiplexed to a single output.

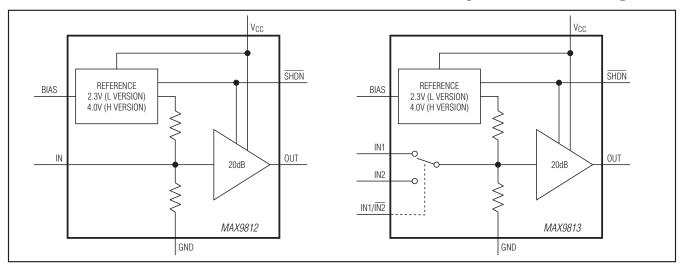
The MAX9812/MAX9813 are offered in two grades. The MAX9812L/MAX9813L are optimized for 3.3V supply operation (2.7V to 3.6V). The MAX9812H/MAX9813H are PC2001 compliant and are optimized for 5V operation (4.5V to 5.5V). Both devices are specified over the -40°C to +85°C extended operating temperature range.

Applications

Notebook Computers PDAs Smart Phones Digital Cameras Video Tape Recorders

Features

- PC2001 Compliant
- 100dB at 217Hz Power-Supply Rejection Ratio
- Very Low 230µA Quiescent Current
- Low 0.015% THD+N
- Available in Two Versions MAX9812L/MAX9813L—2.7V to 3.6V MAX9812H/MAX9813H—4.5V to 5.5V
- Internal Low-Noise Microphone Bias Supply 2.3V for MAX9812L/MAX9813L 4.0V for MAX9812H/MAX9813H
- ♦ 100nA Low-Power Shutdown Mode
- Rail-to-Rail Outputs
- 20dB Fixed Gain
- Available in Tiny 6-Pin SC70 (2mm x 2.1mm) and 8-Pin SOT23 (3mm x 3mm) Packages
- ♦ Extended Temperature Range -40°C to +85°C


Ordering Information

		PIN-	
PART	TEMP RANGE	PACKAGE	V _{CC} (V)
MAX9812LEXT+T	-40°C to +85°C	6 SC70	2.7 to 3.6
MAX9812HEXT+T	-40°C to +85°C	6 SC70	4.5 to 5.5
MAX9813LEKA+T	-40°C to +85°C	8 SOT23	2.7 to 3.6
MAX9813HEKA+T	-40°C to +85°C	8 SOT23	4.5 to 5.5

+Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.

Simplified Block Diagrams

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

V _{CC} 0.3V to +6.0V
All Other Pins $0.3V$ to (V _{CC} + $0.3V$)
Continuous Current (IN, SHDN, IN1, IN2, IN1/IN2)±20mA
OUT, BIAS Short-Circuit Duration (to GND or V _{CC})Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
SC70 (derate 3.1mW/°C above +70°C)245mW
SOT23 (derate 8.9mw/°C above +70°C)714mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

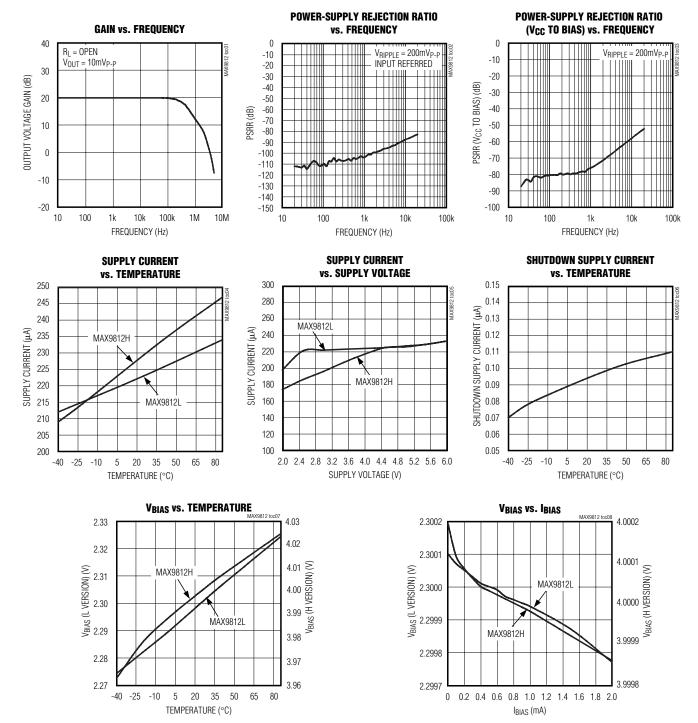
 $\underline{(V_{CC} = 3.3V, I_{BIAS} = 500\mu A (MAX9812L/MAX9813L), V_{CC} = 5V, I_{BIAS} = 800\mu A (MAX9812H/MAX9813H), V_{GND} = 0V, R_L = open, SHDN = V_{CC}, T_A = T_{MIN}$ to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
GENERAL	•			•			•
		MAX9812L/MAX9813L	Inferred from	2.7		3.6	V
Supply Voltage Range	VCC	MAX9812H/MAX9813H	PSRR test	4.5		5.5	
Supply Current	Icc	I _{BIAS} = 0A			230	400	μΑ
Shutdown Supply Current	ICC_SHDN	$\overline{\text{SHDN}} = \text{GND}$			0.1	1	μA
Amplifier Output Bias Voltage		MAX9812L/MAX9813L		1.35	1.5	1.65	v
Ampliner Output blas voltage	Vout_dC	MAX9812H/MAX9813H		2.25	2.5	2.75	v
Input Resistance	R _{IN}				85		kΩ
Voltage Gain	Av			19	20	21	dB
Device Overally Deite stine Detic		Input referred, T _A = +25°C	DC	90	100		dB
	PSRR _{OUT}		f = 217Hz		100		
Power-Supply Rejection Ratio			f = 1kHz		100		
			f = 10 kHz		90		
Output Voltage Swing	V _{OH}	$R_L = 10k\Omega$ to $V_{CC}/2$			V _{CC} - 0.1		
		$R_L = 1k\Omega$ to $V_{CC}/2$		V _{CC} - 0.25V	V _{CC} - 0.1V		
		$R_L = 10k\Omega$ to $V_{CC}/2$			0.1		
	Vol	$R_L = 1k\Omega$ to $V_{CC}/2$			0.1	0.25	
Output Short-Circuit Current	IOUT_SC	Sinking or sourcing		3	12	24	mA
Small-Signal -3dB Bandwidth	BW	V _{OUT} = 10mV _{P-P}			400		kHz
Output Capacitive-Load Stability	CL	No sustained oscillations			50		pF
Output Impedance	Z _{OUT}	f = 1kHz			0.5		Ω
Output Slew Rate	SR	V _{OUT} = 1V step			1		V/µs

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

ELECTRICAL CHARACTERISTICS (continued)

 $\frac{(V_{CC} = 3.3V, I_{BIAS} = 500\mu A \text{ (MAX9812L/MAX9813L)}, V_{CC} = 5V, I_{BIAS} = 800\mu A \text{ (MAX9812H/MAX9813H)}, V_{GND} = 0V, R_L = open, SHDN = V_{CC}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

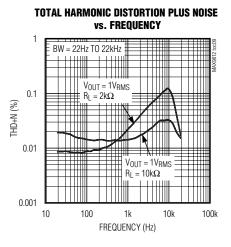

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
Amplifier Input Voltage-Noise Density	e _n	Inputs at AC GND	f = 1kHz		40		nV/√Hz
Total Integrated Input Noise	Vn	22Hz to 22kHz BW, inputs	at AC GND		5		μV _{RMS}
Off-Isolation		Input referred, MAX9813	1kHz		75		dB
On-Isolation		only	10kHz	60			uв
Total Harmonic Distortion Plus Noise	THD+N	f = 1kHz, R _L = 10k Ω to V _{CC} /2, BW = 22Hz to 22kHz	$V_{OUT} = 1V_{P-P}$ (L version)		0.04		0/
			VOUT = 4V _{P-P} (H version)		0.015		- %
BIAS		•					
Riss Output Voltage Range	VBIAS	MAX9812L/MAX9813L		2.1	2.30	2.55	V
Bias Output Voltage Range VB		MAX9812H/MAX9813H		3.6	4.0	4.4	V
Bias Output Resistance	R _{BIAS}				0.1		Ω
Power-Supply Rejection Ratio	PSRR _{BIAS}	DC, $T_A = +25^{\circ}C$ 70		80			
		f = 217Hz			80		dB
(V _{CC} to BIAS)		f = 1kHz			75		
		f = 10kHz			55		
BIAS Current Limit	IBIAS_SC	BIAS short to GND		5	22	50	mA
BIAS Capacitive-Load Stability	CBIAS	No sustained oscillations			50		pF
Total Integrated BIAS Noise	Vn	22Hz to 22kHz BW			29		μV _{RMS}
DIGITAL INPUTS (SHDN, IN1/IN2	2)						
Logic-Low Threshold	VIL					0.8	V
Logic-High Threshold	VIH			2.0			V
Logic Input Current	lin	$\overline{\text{SHDN}} = \text{GND} \text{ or } V_{\text{CC}}$				±1	μA
Shutdown Enable Time	tSHDN_ON	95% of settled value			10		ms
Shutdown Disable Time	tSHDN_OFF				50		μs
IN1/IN2 Select Time	tSEL				10		μs

Note 1: All specifications are 100% tested at $T_A = +25$ °C. Temperature limits are guaranteed by design.

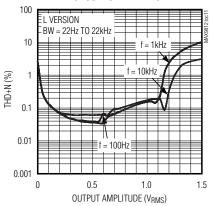
MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

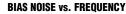
Typical Operating Characteristics

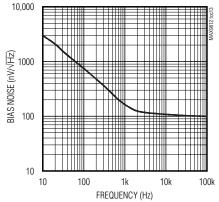
 $(V_{CC} = 3.3V (MAX9812L/MAX9813L), V_{CC} = 5V (MAX9812H/MAX9813H), V_{GND} = 0V, R_L = 10k\Omega \text{ to } V_{CC}/2, \overline{SHDN} = V_{CC}, T_A = +25^{\circ}C, unless otherwise noted.)$



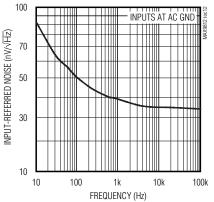
Maxim Integrated


Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

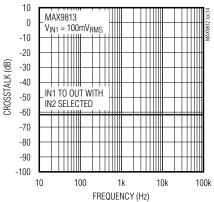

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V (MAX9812L/MAX9813L), V_{CC} = 5V (MAX9812H/MAX9813H), V_{GND} = 0V, R_L = 10k\Omega$ to V_{CC}/2, SHDN = V_{CC}, T_A = +25°C, unless otherwise noted.)

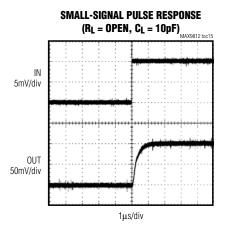
TOTAL HARMONIC DISTORTION PLUS NOISE vs. Output Amplitude

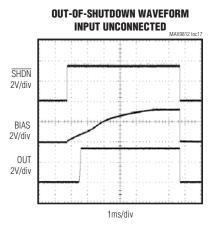

10 H VERSION BW = 22Hz TO 22KHz 1

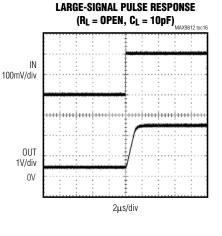
TOTAL HARMONIC DISTORTION PLUS NOISE


vs. OUTPUT AMPLITUDE

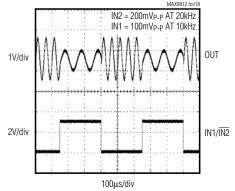
INPUT-REFERRED NOISE vs. FREQUENCY


OFF-ISOLATION vs. FREQUENCY




Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V (MAX9812L/MAX9813L), V_{CC} = 5V (MAX9812H/MAX9813H), V_{GND} = 0V, R_L = 10k\Omega \text{ to } V_{CC}/2, \overline{SHDN} = V_{CC}, T_A = +25^{\circ}C, unless otherwise noted.)$

MAX9813 SWITCHING BETWEEN TWO INPUTS

OUT 1V/div 500mV/div 2µs/div

OUTPUT OVERDRIVEN

Maxim Integrated

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

Pin Description

Р	IN		FUNCTION		
MAX9812L/ MAX9812H	MAX9813L/ MAX9813H	NAME			
1	3	SHDN	Active-Low Shutdown Input. Connect \overline{SHDN} to V _{CC} for normal operation. Connect \overline{SHDN} to GND for shutdown. \overline{SHDN} is a high-impedance input; do not leave unconnected.		
2	2	GND	Ground		
3	1	OUT	Amplifier Output		
4	8	Vcc	Positive Supply. Bypass V_{CC} to GND with a 0.1µF capacitor.		
5	7	BIAS	Low-Noise Microphone Bias Output. 2.3V output for MAX9812L/MAX9813L. 4V output for MAX9812H/MAX9813H.		
6	—	IN	Amplifier Input (MAX9812)		
	6	IN1	Amplifer Input 1 (MAX9813)		
	5	IN2	Amplifier Input 2 (MAX9813)		
_	4	IN1/IN2	Input Selector. When IN1/IN2 is high, IN1 is selected. When IN1/IN2 low, IN2 is selected.		

Detailed Description

The MAX9812_/MAX9813_ are low-power fixed-gain microphone amplifiers available in a single- or dual-input configuration. The gain is set at 10V/V (20dB) with a 400kHz, -3dB bandwidth. They also feature a low-noise, integrated microphone input bias voltage.

Single/Dual Input

The MAX9812L/MAX9812H are single-input amplifiers and the MAX9813L/MAX9813H are dual-input amplifiers. All devices typically have an input impedance of 85k Ω . The inputs to the dual version are controlled through a fast 2:1 mux, selectable through the IN1/IN2 pin. Driving IN1/IN2 high selects IN1 and driving the IN1/IN2 low selects IN2. IN1/IN2 is designed to be driven by a logic high of \geq 2V and a logic low \leq 0.8V. The IN1/IN2 has a 10µs switching time from one channel to the other.

PC2001 Low-Noise Microphone BIAS

The MAX9812_/MAX9813_ provide a low-noise voltage BIAS designed for biasing electret condenser microphone (ECM) cartridges. The BIAS output is regulated to typically 2.3V for the MAX9812L/MAX9813L and 4V for the MAX9812H/MAX9813H. In the single-input version (MAX9812_), the BIAS output can source up to 1mA. In the dual-input version (MAX9813_), the BIAS output can source up to 2mA. The MAX9812H/MAX9813H provides a PC2001-compliant BIAS voltage.

Output Stage

The MAX9812_/MAX9813_ rail-to-rail output (OUT) typically swings to within 100mV of the rails when driving $10k\Omega$.

The output DC bias point is set to 1.5V for the MAX9812L/ MAX9813L and 2.5V for the MAX9812H/MAX9813H.

Shutdown Mode

SHDN controls whether the MAX9812_/MAX9813_ is active or in shutdown mode. Driving SHDN low forces a low-power (100nA) shutdown mode. In this mode, the OUT pin is set to a high-impedance state and the BIAS pin is pulled down (70k Ω). Driving SHDN high enables the MAX9812_/MAX9813_. SHDN is a high-impedance input and cannot be left unconnected.

Driving Capacitive Loads

The MAX9812_/MAX9813_ output can drive up to 50pF of capacitance without sustained oscillations.

Thermal Shutdown

The thermal shutdown feature protects the MAX9812_/MAX9813_ from destruction due to overheating caused by shorting the outputs. This protection feature causes OUT and BIAS to shut down and go high impedance when the die temperature reaches $+140^{\circ}$ C. The device restarts after the die temperature falls below $+120^{\circ}$ C.

Applications Information

Power-Up

The MAX9812_/MAX9813_ output typically settles to 95% within 10ms after power-up.

Typical Application Circuit

Figure 1 shows the MAX9813H used as a preamplifier with the MAX9760 3W audio power amplifier.

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

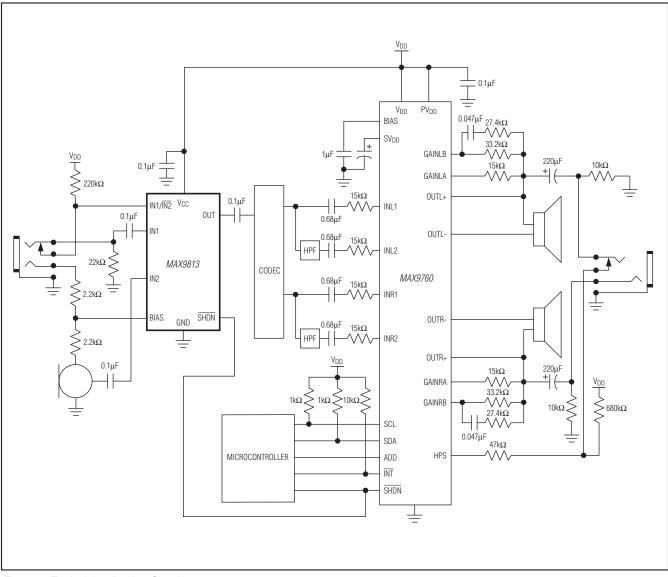
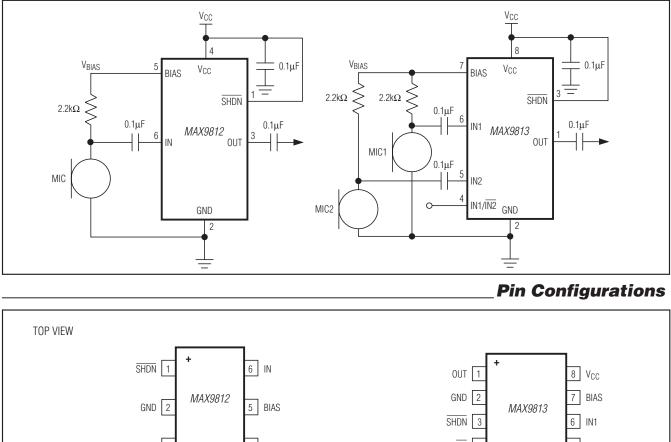
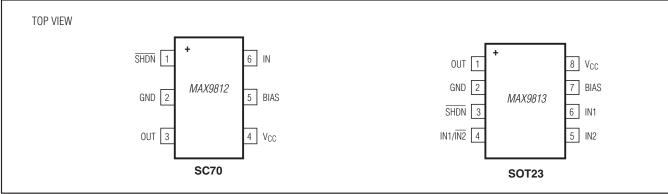




Figure 1. Typical Application Circuit

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain **Microphone Amplifiers with Integrated Bias**

Typical Operating Circuits

Selector Guide

PART	PIN-PACKAGE	V _{CC} (V)	TOP MARK
MAX9812LEXT+T	6 SC70	2.7 to 3.6	ABJ
MAX9812HEXT+T	6 SC70	4.5 to 5.5	ABK
MAX9813LEKA+T	8 SOT23	2.7 to 3.6	AEEU
MAX9813HEKA+T	8 SOT23	4.5 to 5.5	AEEV

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

Maxim Integrated

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC70	X6SN+1	<u>21-0077</u>	<u>90-0189</u>
8 SOT	K8+1	<u>21-0078</u>	<u>90-0176</u>

Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/03	Initial release	—
1	8/12	Added lead-free description	1, 9
2	9/12	Added automotive qualified part	1
3	4/14	Removed automotive qualified part and references	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2014 Maxim Integrated Products, Inc. The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.