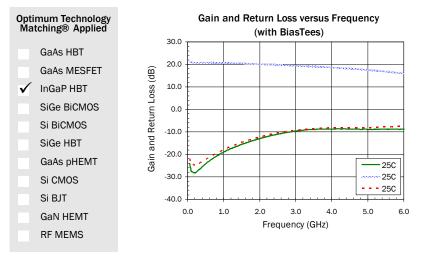


rfmd.com


50 MHz to 6000 MHz, CASCADABLE ACTIVE BIAS InGaP HBT MMIC AMPLIFIER

Package: SOT-89

Product Description

RFMD's SBB5089Z is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SBB5089Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SBB5089Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to 50Ω .

Features

- Wideband Flat Gain to 4GHz: +/-1.1dB
- P_{1dB}=20.4dBm at 1950MHz
- Single Fixed 5V Supply
- Robust 1000V ESD, Class 1C
- Patented Thermal Design and **Bias Circuit**
- Low Thermal Resistance

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- Wideband Intrumentation
- Wireless Data, Satellite Terminals

Parameter	Specification			11	Oandition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain	19.0	20.5	22.0	dB	850MHz	
	18.5	20.0	21.5	dB	1950MHz	
	14.5	16.0	17.5	dB	6000MHz	
Output Power at 1dB Compression		20.5		dBm	850MHz	
	19.0	20.5		dBm	1950MHz	
Third Order Intercept Point		38.5		dBm	850MHz	
	33.0	35.0		dBm	1950MHz	
Bandwidth		3000		MHz	Min. 10dB return loss (typ.)	
Input Return Loss	10.0	14.0		dB	1950MHz	
Output Return Loss	10.0	14.0		dB	1950MHz	
Reverse Isolation		23.3		dB	1950MHz	
Noise Figure		4.2	4.9	dB	1950MHz	
Device Operating Voltage		5.0	5.25	V		
Device Operating Current	65.0	75.0	92.0	mA		
Thermal Resistance		69.9		°C/W	junction - lead	

Test Conditions: V_D=5V, I_D=75 mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-dBm, T_L=25 °C, Z_S=Z_L=50 Ω , Tested with Bias Tees

DS101217

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit		
Device Current (I _D)	100	mA		
Max Device Voltage (V _D)	5.5	V		
Max RF Input Power	24	dBm		
Max Operating Dissipated Power	0.55	W		
Junction Temp (T _J)	+150	°C		
Operating Temp Range (T _L)	-40 to +85	°C		
Storage Temp Range	-40 to +150	°C		
ESD Rating - Human Body Model (HBM)	Class 1C			
Moisture Sensitivity Level	MSL2			

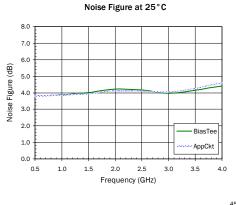
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

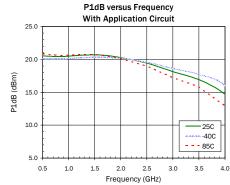
Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L) / \, R_{TH}, \, j\text{-}I$ and $T_L = T_{LEAD}$

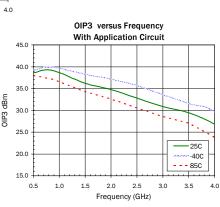
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Typical Performance at Key Operating Frequencies (0.5GHz to 3.5GHz Application Circuit)


Parameter	Unit	500 MHz	850MHz	1950MHz	2500MHz	3500MHz	4000 MHz
Small Signal Gain	dB	20.8	20.8	20.1	19.8	18.7	17.8
Output Third Order Intercept Point	dBm	38.6	39.2	34.9	32.8	29.4	26.8
Output Power at 1dB Compression	dBm	20.5	20.4	20.4	19.4	16.9	14.7
Input Return Loss	dB	27.2	22.7	14.6	12.9	10.6	11.6
Output Return Loss	dB	31.8	21.5	13.5	12.0	13.5	27.5
Reverse Isolation	dB	22.7	22.8	23.4	23.7	24.7	25.7
Noise Figure	dB	3.8	3.8	4.1	4.1	4.3	4.6

Test Conditions: VCC=5V, I_D =75mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=0dBm, T_L =25°C, Z_S = Z_L =50 Ω

Data on charts taken with 240MHz Application Circuit

2 of 8

25C

-40C

85C

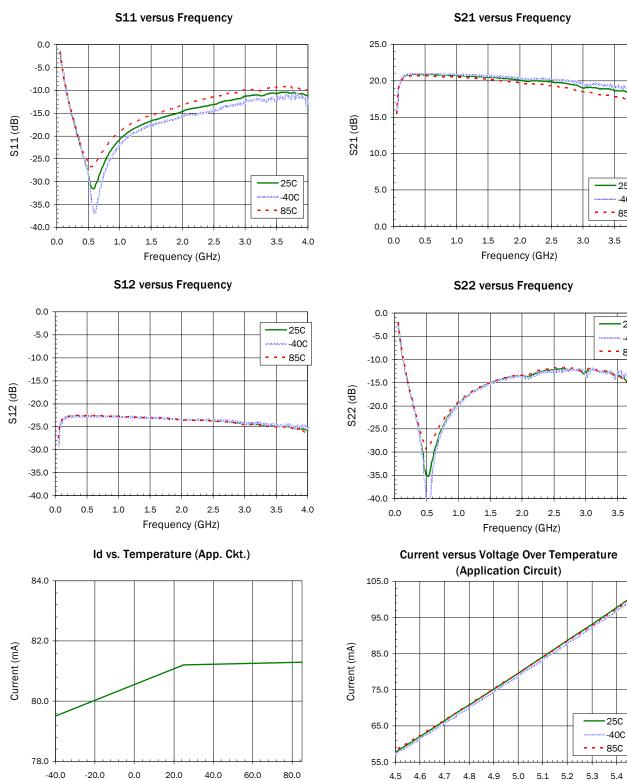
25C

-40C

85C

3.5

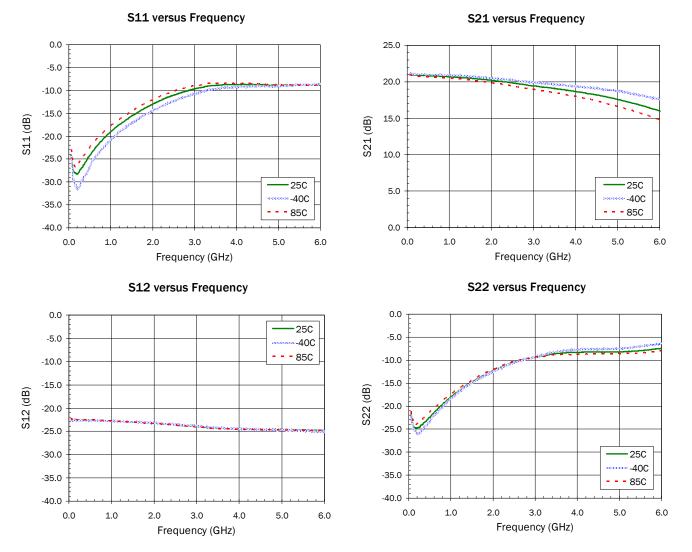
5.4 5.5


Voltage (V)

4.0

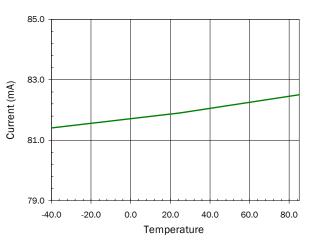
4.0

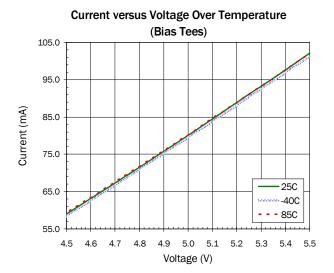
0.5GHz to 3.5GHz Application Circuit S-Parameters Over Temperature


7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.

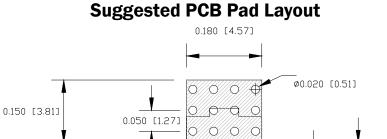
DS101217

Temperature

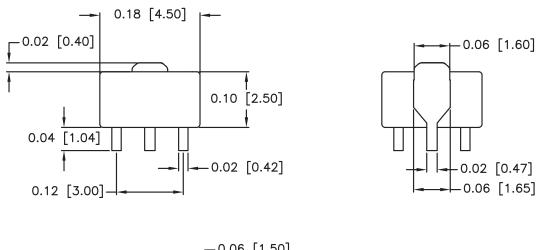

S-Parameters Over Temperature (Bias Tee)

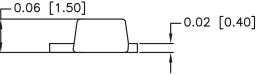


Device Current Over Temperature (Bias Tee)

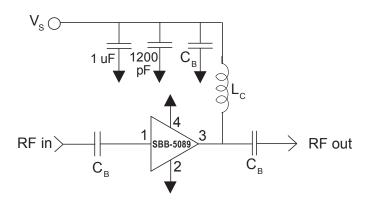

Id vs. Temperature (Bias Tees)

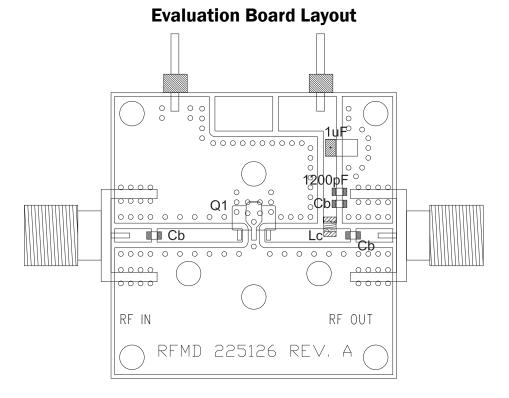
RF	MD	•))))


rfmd.com


Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible
3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper oper- ation.

Nominal Package Dimensions


Dimensions in inches (millimeters)



Application Schematic

Reference Designator	Frequency (MHz) 500 to 3500
C _B	68pF
L _C	82nH 0805CS

Part Identification

Alternate marking "SBB5089Z" on line 1 with Trace Code on line 2.

Ordering Information

Ordering Code	Description
SBB5089Z	7" Reel with 1000 pieces
SBB5089ZSQ	Sample Bag with 25 pieces
SBB5089ZSR	7" Reel with 100 pieces
SBB5089ZPCK	500MHz to 3500MHz PCBA with 5-piece sample bag